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A compressible multiphase unconditionally hyperbolic model is proposed. It is able
to deal with a wide range of applications: interfaces between compressible materials,
shock waves in condensed multiphase mixtures, homogeneous two-phase flows (bub-
bly and droplet flows) and cavitation in liquids. Here we focus on the generalization
of the formulation to an arbitrary number of fluids, and to mass and energy transfers,
and extend the associated Godunov method.

We first detail the specific problems involved in the computation of thermodynamic
interface variables when dealing with compressible materials separated by well-defined
interfaces. We then address one of the major problems in the modelling of detonation
waves in condensed energetic materials and propose a way to suppress the mixture
equation of state. We then consider another problem of practical importance related
to high-pressure liquid injection and associated cavitating flow. This problem involves
the dynamic creation of interfaces. We show that the multiphase model is able to
solve these very different problems using a unique formulation.

We then develop the Godunov method for this model. We show how the non-
conservative terms must be discretized in order to fulfil the interface conditions.
Numerical resolution of interface conditions and partial equilibrium multiphase mix-
tures also requires the introduction of infinite relaxation terms. We propose a way
to solve them in the context of an arbitrary number of fluids. This is of particular
importance for the development of multimaterial reactive hydrocodes. We finally ex-
tend the discretization method in the multidimensional case, and show some results
and validations of the model and method.

1. Introduction
Difficult problems arise in the modelling of flows involving mixtures. These mixtures

may have a physical origin as in conventional multiphase flows or may be due
to numerical inaccuracies and artificial mixing as in the computation of interface
variables. This occurs when an interface separates two compressible fluids of different
physical properties in conjunction with the use of an Eulerian scheme.

In this introduction we review these difficulties first for flows involving fluid in-
terfaces, then also for flows involving homogeneous mixtures, and finally for flows
where interfaces appear naturally: boiling and cavitating flows. We will then develop
the solution strategy valid for any of these applications.
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1.1. Short review of methods for compressible flows with interfaces

Compressible multifluid flows occur in many situations when fluids have different
physical or thermodynamic properties and are separated by interfaces. A conventional
example is an interface between air and helium under shock wave interaction. Other
well-known examples are the Richtmyer–Meshkov instabilities between two gases, the
behaviour of a gas bubble in a liquid in a shock wave, etc.

Many numerical simulations of such processes are based on the Euler or Navier–
Stokes equations augmented by one or more species conservation equations in order
to build reasonable equation of state parameters at the interface. Indeed, all con-
ventional numerical methods produce artificial diffusion of contact discontinuities,
resulting in an artificial fluid mixing at the interface. Inside this artificial mixture
computation of all thermodynamic variables is inaccurate with this approach (Karni
1994; Abgrall 1996).

Frequently, the equations of state that can be found in the literature have only a
limited range of validity (especially for solids and liquids). When the thermodynamic
parameters provided by the numerical method are slightly outside this domain of
validity, the pressure, entropy, and sound speed, that are computed have no physical
meaning (negative pressure etc.). In many cases, an interface is the physical location
where the flow parameters are close of the limits of validity of the equation of state.
Hence a careful and clean treatment of interfaces is mandatory. Basically, two classes
of methods are able to solve more or less accurately interface problems. The first class
corresponds to methods where the numerical diffusion at the interfaces is eliminated.
Consequently, the artificial mixing problem is eliminated too, but other practical
problems may arise. The second class corresponds to methods allowing numerical
diffusion at the interface and is closer to standard methods used for gas dynamics.

1.1.1. Methods eliminating numerical diffusion at the interfaces

(a) Lagrangian methods
In this framework the interfaces are characterized by specific positions in the flow and
move with the local velocity. If the method does not use explicit artificial viscosity,
the interface will remain sharp. But in fluid flows, the interface may have large
deformation and the mesh suffers large distortions. These distortions are responsible
for errors in the solution and it is also necessary to periodically rezone the mesh.
Moreover, fluid dynamics applications deal frequently with fluid inflows and outflows.
In the context of Lagrangian methods this implies addition and elimination of meshes,
yielding an extra complexity. Another drawback is related to sliding lines that pose
extra difficulties. An excellent review of these methods is given in Benson (1992).

(b) Arbitrary Lagrangian–Eulerian (ALE) methods
These methods are Lagrangian at the interfaces and use moving grid strategies
with Eulerian schemes away from the interfaces. They allow larger distortions than
strictly Lagrangian methods but are still limited. Powerful ALE methods have been
developed by Farhat & Roux (1991) with a dynamic mesh management that reduces
mesh distortions.

(c) Front tracking methods
These methods use a fixed grid but combine several flow solvers. Usually they use a
conventional Eulerian solver for points away from the interface and a specific scheme
for the points around the interface. The management of the various schemes is easy
in one dimension as done for example in Harten & Hyman (1983), Mao (1993),
Leveque & Shyue (1996), Cocchi & Saurel (1997). Some of these methods are strictly
conservative, at least in one dimension (Harten & Hyman 1983; Leveque & Shyue
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1996). But the extension to multidimensions is no longer conservative. Actually, the
main drawback is not related to the conservation, but to the interface coupling with
the Eulerian scheme when the interface presents topological singularities, break-up or
coalescence (Cocchi & Saurel 1997). Also, the coding of these methods, even though
conceptually simple, is very difficult. In spite of these drawbacks, the accuracy of such
methods is excellent in interface representation and considerable efforts have been
made by specialized research teams to develop efficient three-dimensional codes (see
for example Glimm et al. 1998).

(d) Interface reconstruction methods
Here the interfaces are not explicitly tracked but reconstructed with the help of the
computation of volume fraction of the various phases. They use the VOF (volume
of fluid) idea (Hirt & Nichols 1981) and reconstruction methods (Youngs 1982).
These methods are widely used in hydrocodes and seem to be efficient, but certainly
not conservative. They use an advection algorithm for volume fraction evolution
and a reconstruction procedure to locate the interface and restore a sharp profile.
Knowledge of the interface position is sufficient to determine the density field and
solve the fluid dynamics equations for incompressible flows. For compressible flows,
determination of the density and internal energy of each fluid in a mixed cell is
not at all obvious. Papers in the literature comment very little on this point and it
is not possible to evaluate these methods. However, since the applications are very
important, specialized research groups have developed such codes. The published
results seem to agree well with what is expected, at least for the main features of
interface representation.

(e) Level set methods
The level set method (Dervieux & Thomasset 1981; Mulder, Osher & Sethian 1992)
is a method used to locate fronts; it is not sufficient to compute the flow variables
at an interface. But the information of the interface location may be used and
combined with other ingredients to determine the flow variables. Such an idea has
been proposed recently by Fedkiw et al. (1999) and seem to be very efficient. Although
non-conservative, it allows an accurate determination of the interface characteristics
and flow variables. In this method (The Ghost Fluid Method), the interface is
considered as a moving boundary, and the information travels between two (or more)
systems of equations by a procedure corresponding to a piston boundary condition.
In order to obtain accurate results, the piston boundary condition treatment in the
Euler system has been revisited and improved (Fedkiw, Marquina & Merriman 1999).

1.1.2. Methods allowing numerical diffusion at the interfaces

Usually numerical diffusion is considered as a drawback for numerical scheme. But
it is a necessary feature for capturing discontinuities. It renders easy the computation
of shock or contact discontinuities in gas dynamics applications and it also predicts
shock and contact discontinuity formation. In the context of flows with interfaces, we
look at a numerical scheme that possesses a similar simplicity: a scheme that works
on a fixed grid, that allows interface deformations as large as possible, that deals
with inflow and outflow boundary conditions in a simple way, that uses the same
numerical scheme for all computational cells (multiphase mixtures, shocks, interfaces,
rarefaction waves) and that also predict interface formation. These last features
are the most important. Simplicity is a result of the scheme and model generality.
Interface formation is a very important feature in cavitation flow modelling. Of course,
numerical diffusion is still a drawback, but there are several ways to reduce its effects
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as done conventionally in gas dynamics applications: mesh refinement, high-order
differencing and other strategies.

(a) Methods based on the Euler equations
The first efficient method was proposed by Karni (1996). This method was based on
the level set technique to locate the interface, and a primitive variable formulation
of the Euler equations was used to determine the pressure at the interface. This
method, although non-conservative, has proven efficiency for the computation of
interface properties between ideal gases. But the extension of this method to reacting
flows and real materials was not obvious. Simultaneously, Abgrall (1996) proposed
another method for ideal gases in one space dimension. A variant of this method was
extended by Shyue (1998) to materials governed by the stiffened gas equation of state
and independently by Saurel & Abgrall (1999b) again to materials governed by the
same equation of state in several space dimensions. This last method can be extended
to reacting flows and more general equations of state (Saurel & Mencacci 1999). It
has been improved and extended to unstructured grids by Abgrall, Nkonga & Saurel
(2000).

All these methods are very efficient and simple to code for relatively simple physical
models. Their main disadvantage lies in the conservation errors regarding the partial
mass of the various fluids yielding inaccurate internal energies and temperatures at
the interface. They are also difficult to extend to arbitrary equations of state. This is
one of the reasons why we have developed a method based on a formulation more
suitable than the Euler equations. We now review this method.

(b) Methods based on multiphase flows equations
We have recently proposed a method based on the compressible multiphase flow
equations for the computation of interface variables (Saurel & Abgrall 1999a). This
method is based on a model involving seven equations (when two fluids only are
considered). It is able to deal with very general equations of state, and is conservative
for the mixture. It provides accurate internal energies and temperatures at the inter-
face. To our knowledge, the Fedkiw and the multiphase methods are the only ones
able to do this. Recently, we have proposed a reduced form of the multiphase model
(Massoni et al. 2000) that possesses this feature.

The success of the multiphase method relies on several key points:

it uses an unconditionally hyperbolic model for two-phase compressible mixtures;

resolution is based on a modified Godunov (1959) scheme involving accurate
differencing of the non-conservative terms and equations;

resolution also uses a relaxation procedure to restore pressure and velocity interface
conditions based on infinite relaxation parameters.

But the most important feature is that this method does not work only for interface
problems. The model takes basic ideas from one proposed by Baer & Nunziato (1986)
for the computation of detonation waves in granular materials. We have revisited
this model and proposed introducing some slight modifications regarding closure
relations and major modifications regarding relaxation parameters. But this model
keeps its generality. It is able to model non-equilibrium two-phase flows as well as
flows with interfaces. This has important implications for the modelling of shock
waves in compressible mixtures, detonation waves in heterogeneous materials, and
any flows involving compressible mixtures. It also possesses a very important feature:
the method is able to dynamically create interfaces. This may be very important for
the simulation of cavitating flows. So this method is able to deal with a wide range
of applications as we detail in the next sections.
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1.2. The modelling of detonation waves in solid energetic materials

These remarks concern the modelling of detonation waves in solid energetic material
and do not apply to gaseous detonations. In gaseous detonations, there is no phase
change but only a change in chemical composition of the mixture. Also, the molecular
collisions are so intense that the assumption of temperature equilibrium between the
various components is valid. For detonations in solid explosives this no longer holds.
Indeed the detonation is composed of a shock wave propagating in the solid material
and followed by a reaction zone where energy is liberated with a finite rate. During
the energy liberation the reactive solid material transforms to product gases. When
the reaction ends, the flow is a pure gas mixture. But the reaction zone always
corresponds to a multiphase mixture. In this multiphase mixture, the assumption of
thermal equilibrium is totally wrong: the solid phase has a very different temperature
from the burnt gases.

For many applications, the details of the reaction zone has no importance because
this zone is very sharp (a few micrometres), and the detonation can be considered
as a discontinuity connecting a pure unreacted solid to a mixture of reacted gases.
But there are a lot of applications for which the details of this reaction zone are
important. For example, with non-ideal explosives, this reaction zone can be of the
order of 1 cm to 1 m.

In spite of the above discussion, the modelling in nearly all detonation codes is
based on the Euler equations. Since the Euler equations allow determination only
of the mixture variables (density, velocity and internal energy) it is necessary to
have an equation of state for the mixture in order to compute the pressure. So
the difficulty is transferred to the mixture equation of state. To construct a mixture
equation of state, it is necessary to know the equations of state for each pure material
(for example gas and solid) and two thermodynamic assumptions to couple them.
The first thermodynamic assumption that is always used is pressure equilibrium
between each phase. This assumption can easily be justified for the problems under
study. All the difficulties come from the second equilibrium relation. Most mixture
equations of state use the assumption of temperature equilibrium between phases,
or density equilibrium, or other equalities between thermodynamic functions. The
density equilibrium assumption is of course wrong: there is no reason why the gas
and the solid should have the same density. The temperature equilibrium assumption
is also wrong: the gas phase during combustion reaches 3000–7000 K while the solid
phase after the shock front does not exceed 1000 K.

Thus, we can conclude that constructing a mixture equation of state is not easy and
can be inaccurate because there is a lack of thermodynamic information regarding
the mixture (only mixture energy and density are known with conventional models).

A way to circumvent this problem is to determine more thermodynamic variables
for the multiphase mixture. The consequence is to replace the Euler equations by a
multiphase model. In this context, each phase will be governed by its own set of partial
differential equation, closed by the equation of state (EOS) of the corresponding
pure material. The flow model is then no longer dependent on the mixture EOS
model. We will show in the following that the multiphase model used for interface
computation can be extended easily to the computation of detonation waves. It
just needs some extentions regarding mass and energy transfers. Generality of the
model will render easy the computation of the interaction of detonation waves with
other materials separated by interfaces. This will be done with the same model and
method.
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1.3. The modelling of cavitating flows

Cavitation occurs in liquids and solids when a pressure drop is such that the resulting
thermodynamic state corresponds to a point lying inside the saturation curve. Such a
situation may occur when a strong rarefaction wave propagates into a liquid or when
acceleration or inertial effects induce a pressure drop.

Cavitation is difficult to model because starting from a pure phase, another phase
appears and creates interfaces. To our knowledge, the modelling of cavitating flows
has been achieved in specific situations only:

homogeneous bubbly flows;
a single or limited number of interfaces (cavitation pockets);
homogeneous cavitation with mixture models.

(a) Bubbly flows
There are a lot of models used to study bubbly flows and cavitation phenomena. They
are usually based on a continuous model for the mean flow, compressible or not, with
a microscopic model for the bubble dynamics based on the Rayleigh equation. The
drawbacks of this type of model are that the gas phase must be present initially and
that the flow topology is fixed: a bubbly flow only. For instance, cavitation pockets
cannot be predicted by this type of model. Examples of these models are given in van
Wijngaarden (1972), Tan & Bankoff (1984) and Mazel et al. (1996).

(b) Cavitation pockets
The literature contains many simulations of cavitation pockets around airfoils. These
simulations use an iterative method based on incompressible Euler or Navier–Stokes
equations in a geometry that evolves during the iterative process. The interface is
solved as a slip boundary condition and its position is varied with time in order that
the saturation pressure in the gas phase (or local pressure if compressible equations
are solved in the gas) be equal to the local liquid pressure. This procedure is of
course expensive in computer resources, limited to a small number of interfaces and
to steady or quasi-steady conditions.

Another procedure, more suitable for dynamic simulations is based on the VOF
method (Hirt & Nichols 1981) and incompressible flow equations. In these methods
the interface needs to be settled initially: interface creation is not allowed. Also,
the external flow must be single phase: bubbly flows for example are not allowed.
Another restriction is related to the incompressible flow assumption. This means that
these simulations are restricted to low flow velocities and to weak thermodynamic
and kinematic variations inside the gas pocket. Some example of these procedures
may be found in Molin et al. (1997) and de Jouëtte et al. (1997).

(c) Mixture models
In these models, the flow is modelled with the compressible Euler or Navier–Stokes
equations closed by an equation of state valid for all fluid states: pure liquid, pure
vapour and a two-phase mixture. The mixture equation of state is based on the
phase diagram and assumes pressure and temperature equilibrium. Here, liquid and
gas compressibilities are considered, and the assumption of pressure and temperature
equilibrium is not as restrictive as in the modelling of detonation waves, because it
corresponds to the correct equilibrium conditions inside the saturation region.

Compared to the previous modelling methods, this approach is more suitable for
high-velocity flows. Some examples are given in Liou & Edwards (1999) and Saurel,
Cocchi & Butler (1999) for highly compressible flow conditions. Unlike the previous
modelling, this approach allows interface creation and is fully dynamic. There are
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several limitations to this approach. The assumption of thermodynamic equilibrium
forbids the study of supercritical states. Also, mass transfer is assumed instantaneous.
This means that the flow characteristic times are several orders of magnitude larger
than the mass transfer time. This is not always correct. Another important limitation
is related to the flow topology. This approach is suitable for cavitation pockets only, or
flows where the gas phase is well separated from the liquid phase, whereas cavitation
pockets followed by a bubbly flow is a forbidden flow situation. The last limitation
is that the mixture equation of state is valid only for flows where the liquid and
its vapour only are present. If an uncondensable gas (air in water for example) is
present in the flow, the mixture equation of state no longer holds. In many practical
situations, the liquid is not a pure fluid and some uncondensable gases are present.
They strongly influence the mixture compressibility (bubbles expand before reaching
the saturation pressure) and modify the mass transfer dynamics.

(d) Multiphase model
It is now clear that the previous cavitation models are restricted to specific appli-
cations. The multiphase model we propose for interfaces and detonation waves can
also be used for cavitation problems. Of course, it cannot cover all the range of
interest in cavitation problems, but it possesses several features that render it more
general. In particular, it is able to consider compressibility of all phases, takes into
account uncondensable gases, is able to model metastable mixtures, creates inter-
faces dynamically, and also, at least in theory, is able to consider coexisting bubbly
flows and cavitation pockets. More generally, this model is able to solve multi-
phase flows (bubbles, drops, annular flows etc.) and flows with interfaces with the
same basic equations, and with the same numerical method. We now detail its main
features.

2. The multiphase model
To obtain the multiphase flow model we use the averaging method of Drew &

Passman (1998) applied to the compressible Navier–Stokes equations of the various
constituents. We then neglect all dissipative terms everywhere except at the interfaces.
This model is developed in Saurel & Abgrall (1999a) for a two-phase system. It
is inspired by the remarkable work of Baer & Nunziato (1986) where a two-phase
model is proposed to study the deflagration-to-detonation transition in solid energetic
materials. The main difference between Baer & Nunziato’s work and the present
is related to the use of the relaxation terms. We introduce here the notion of
infinite relaxation parameters and instantaneous pressure and velocity equilibrium.
This renders possible the numerical treatment of interface problems, and opens the
model to a wider range of applications (interfaces, detonations, cavitation, and other
multiphase systems). The model is composed of a set of five partial differential
equations for each phase k:

∂αk

∂t
+ ui∇αk = µ(Pk − P ′k) + mk/ρX, (1)

∂αkρk

∂t
+ ∇(αkρkuk) = mk, (2)

∂αkρkuk

∂t
+ ∇(αkρkuk ⊗ uk + αkPk) = Pi∇αk + mkui + Fdk, (3)
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∂αkρkEk

∂t
+ ∇(uk(αkρkEk + αkPk))

= Piui∇αk + mkEki + Fdkui + Qki − µPi(Pk − P ′k), (4)

∂Nk

∂t
+ ∇(Nkuk) = Ṅk, (5)

with the average interface conditions:∑
k

mk = 0, (6)

∑
k

Pi∇αk + mkui + Fdk = 0, (7)

∑
k

Piui∇αk + mkEki + Fdkui + Qki − µPi(Pk − P ′k) = 0. (8)

The notation is conventional. The volume fraction αk is defined by the volume
occupied by phase k over the total volume. The saturation constraint imposes

∑
αk =

1. The density, velocity, pressure and total energy are represented respectively by
ρ, u, P and E = e+ 1/2uu. The subscripts k and i are related to phase k and interface-
averaged variables respectively.

The left-hand side of equations (2), (3) and (4) are conventional. On the right-hand
side appear the terms related to mass transfer mk , drag force Fdk , heat transfer Qi and
the non-conservative terms Pi∇αk and Piui∇αk . The µ(Pk −P ′k) and µPi(Pk −P ′k) terms
are related to the pressure relaxation process. They are of major importance.

Equation (1) expresses the evolution of the phase volume fractions. It comes
from the average of a test function equal to 1 in phase k and 0 elsewhere. This
equation is a simplification of a more general volume fraction evolution equation
accounting for inertial effects (bubble pulsation for example) and other interface
kinematics considerations. The generalization of the present model to micro-inertia
considerations (bubble pulsation) is given in Gavrilyuk & Saurel (2000). Here, for
mathematical, numerical and physical reasons we close the model with this simplified
equation.

Equation (5) represents the evolution of the number density of the individual entity
composing phase k. For instance, if phase k is the gas phase filling bubbles, Nk

then represents the number density of bubbles per unit volume. Knowledge of the
number density of individual particles is important for determining the surface of
mass, momentum and energy exchanges between phases. The term Ṅk models breakup
or coalescence of individual particles.

When the assumption of spherical elemental particles is not valid, the exchange
surface determination is a more acute problem. Such a difficulty occurs when the flow
changes topology. Determination of the interfacial area in the general case is still an
open problem. The interested reader will find information in Drew & Passman (1998)
and Morel, Goreaud & Delhaye (1999).

Before giving details about the various terms, let us give a simple picture of
the physical meaning of the non-conservative terms Pi∇αk and Piui∇αk . The one-
dimensional Euler equations averaged over a duct of variable cross-section A, in the
absence of mass, momentum and heat transfer are:

∂Aρ

∂t
+
∂(Aρu)

∂x
= 0, (9)
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∂Aρu

∂t
+
∂A(ρu2 + P )

∂x
= P

∂A

∂x
, (10)

∂AρE

∂t
+
∂Au(ρE + P )

∂x
= −P ∂A

∂t
. (11)

In two-phase systems, the volume fraction α is sometimes used as a surface fraction.
If we make this analogy, and replace the temporal derivative ∂A/∂t by a space
derivative u ∂A/∂x with the help of equation (1), we recover the same equations for
the one-dimensional averaged Euler equations and the multiphase model.

This means that the non-conservative terms in the multiphase model have the same
effect as the duct variation cross-section terms: nozzling terms. Their effects are well
known in steady flows: acceleration of subsonic flows in area restriction for example.
This simple picture can be important for the derivation of numerical schemes, or
results analysis.

This also means that the multiphase model, in a certain sense, couples several Euler
systems in ‘ducts’ of variable cross-section. These ‘ducts’ have permeable walls for the
various transfers, are moving with the flow at velocity ui and expanding with the pressure
differential µ(Pk − P ′k) at a rate controlled by µ.

We now give some details about the closure relations.

2.1. Closure relations independent of the physical processes

When dealing with two-phase gas–liquid flows at low pressure and velocity, the
most natural idea is to consider the liquid phase incompressible. Then, the interfacial
pressure is taken equal to the gas pressure. This choice yields an ill-posed mathematical
model (see for example Drew & Passman 1998), which results in numerical instabilities
during numerical resolution, or in the necessity of using an extremely large numerical
viscosity yielding unrealistic solutions.

Other authors (Toro 1989; Sainsaulieu 1995) have proposed introducing a pressure
non-equilibrium effect, Pi(α). In Sainsaulieu (1995), Pi is a perturbation term that
enables the system to be hyperbolic. In Toro (1989), this term represents compaction
effects in a packed powder bed. Other authors (Powers, Stewart & Krier 1990)
assume Pi = 0. This choice is non-justifiable. It cancels the nozzling effects mentioned
previously. However, considering each phase compressible yields a hyperbolic system
even if Pi = 0.

In our approach, each phase is considered compressible with its own pressure and
velocity. This guarantees hyperbolicity. So, there is some freedom in the choice of
closure relations for interfacial pressure and velocity with respect to hyperbolicity.
But for physical reasons, the interfacial pressure and velocity must be estimated as
accurately as possible. Unfortunately, this is nearly impossible in the general case. For
the specific context of stratified flows, it is possible to estimate an interfacial pressure
on the basis of the velocity and density differences (Bestion 1990). For flow of gases
and solid particles under weak solid compressibility, it is reasonable to assume the
interfacial pressure to be the gas one, and interfacial velocity to be the solid one (Baer
& Nunziato 1986). In fact, for each physical situation, there are choices better than
other, but none is perfectly satisfactory.

For the applications we will show here, the velocities and pressures of all phases
will be relaxed instantaneously during numerical resolution. So, our strategy is to
choose interfacial variables close to the relaxed state (see later sections). Because each
phase is compressible, a choice preserving symmetry is also preferable. A reasonable
estimate that considers compressibility of each phase and preserves symmetry is to
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take the interfacial pressure equal to a mixture total pressure:

Pi =
∑

αk(Pk + ρk(ui − uk)2). (12)

This guess is also motivated by the analysis of the Riemann invariants of the model.
The phase pressures Pk are given by appropriate equations of state Pk = Pk(ρk, ek).
The second interfacial variable is the average interfacial velocity. In most references,
ui is taken equal to the velocity of the incompressible or the less compressible phase
(Butler, Lambeck & Krier 1982, Baer & Nunziato 1986; Saurel, Larini & Loraud
1992; Saurel 1996; and Sainsaulieu 1995). As mentioned previously regarding the
interfacial pressure, determination of the average interfacial velocity is a formidable
task. Again, in the context of compressible multiphase mixtures, the choice of the
interfacial velocity does not affect the mathematical nature of the overall system: it
remains hyperbolic. So there is some freedom in this choice. But again, for symmetry
reasons, and in order to be consistent with the relaxed velocity (see later sections)
we set the velocity of the centre of mass as the estimate for the average interfacial
velocity:

ui =
∑

αkρkuk

/∑
αkρk. (13)

We will give other arguments for these estimates when examining the numerical
method.

2.2. Closure relations dependent on the physical processes

2.2.1. Non-conventional interaction terms–infinite relaxation terms

(a) Pressure terms
The model contains non-conventional interaction terms regarding the pressure relax-
ation process: µ(Pk − P ′k) in the volume fraction evolution equation and µPi(Pk − P ′k)
in the energy equation. The first term represents the rate of expansion of the volume
fraction αk in order that pressures tend towards equilibrium. The physical meaning
of this term is very simple. If the various phases are not in pressure equilibrium after
the passage of a rarefaction or shock wave, the volume of each phase must vary in
order that pressure tends to equilibrium. The variable µ controls the rate at which
this equilibrium will be reached. Existence of this variable has been shown theoreti-
cally following the second law of thermodynamics and the mechanics of irreversible
processes (Baer & Nunziato 1986).

When the pressures are in a non-equilibrium state, the elementary particles (bubbles,
drops etc.) undergo a three-dimensional microscopic motion making their volume vary
in order that pressures tends toward equilibrium. This three-dimensional motion has
not been taken into account in the averaged phase velocities and in our guess for the
interfacial velocity (13). Our interfacial velocity represents the average translational
motion of the mixture, and the microscopic motion is not considered. Introducing a
volume variation function of the pressure differential is a way to correct the estimate
for the averaged interfacial velocity, and also a way to take information from the
microscopic media.

The homogenization variable µ depends on the compressibility of each fluid (and
so of their equations of state), on the nature of each fluid, and on the two-phase
mixture topology. So, it is a very difficult variable or function to determine. But for
most applications, it may be considered as infinite.

We have shown in Saurel & Abgrall (1999a) that these terms are crucial for
the computation of pressure waves in two-phase mixtures, but also of paramount
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importance for restoring the pressure interface condition when solving interfaces
separating compressible pure materials solved with the multiphase flows equations.
When a pressure wave travels a multiphase mixture, if the elementary particles are
sufficiently small compared to the macroscopic control volume and computational
cell, then the time required for an acoustic wave to travel across the elementary
particle and equilibrate the particle pressure to the external pressure is much smaller
than the characteristic time for the propagation of the macroscopic waves. In such
cases, the pressure relaxation parameter can be considered infinite. This situation
occurs as well as in solid alloys through which shock waves travel and considered as
multiphase mixtures, as in detonation waves in solid explosives, as will be detailed
later, and of course at interfaces between pure materials. Actually, at the interfaces,
instantaneous pressure equality between phases is mandatory.

Note that pressure equilibrium is not the required condition when:

(i) Inertial effects are accounted for in a more sophisticated model than equation
(1) (Gavrilyuk & Saurel 2000);

(ii) The materials do not have a fluid behaviour. If material k is a plastic solid for
example, the volume fraction evolution term will be µ(Pk + PY k/r − P ′k) where PY k is
the elastic limit of material k, and r is the microscopic displacement from the initial
equilibrium condition.

(iii) Surface tension effects are considered. In such a case, if material k possesses
a surface tension the volume fraction evolution term will be µ(Pk + σk/r − P ′k) where
σk is the surface tension of material k, and r the radius of curvature of the interface
of the elementary particle.

(iv) Elementary particles have collisions. For example, when the mixture contains
solid packed powder grains the actions of grains over neighbouring grains may
be summarized in an intergranular stress tensor (Kuo, Yang & Moore 1980; Toro
1989). Then the volume fraction evolution term is µ(Pk + Pgk(αk)− P ′k) where Pgk(αk)
represents the action due to the surrounding particles under confining conditions.

To summarize, it is necessary to use the difference of normal constraints in equation
(1) when the material is not an ideal fluid.

Finally, the term µPi(Pk − P ′k) in the energy equation represents the pressure work
during the pressure relaxation process.

(b) Velocity terms
The velocity relaxation term is the most conventional one in multiphase systems and
is represented by the drag force Fdk . What is not conventional in our approach is to
consider an infinite relaxation drag coefficient for the applications under interest.

Let us first recall briefly what the drag force Fdk represents. With a multiphase flow
model, details of the flow microstructure are not available because only averaged
quantities are determined. The drag force over an elementary particle (bubble, drop)
corresponds to the sum of constraints induced by the various materials, at the
interface. There is a part due to viscous or deviatoric constraints (viscous drag force)
and a part due to the spherical part of the strain tensor (pressure drag force). Inside
a multiphase control volume, expressions for these forces need knowledge of the
microscopic flow structure, which is of course not available. So, in general, drag force
is introduced as an empirical relation coming from experiments, or from a submodel.
Conventional drag correlations are a function of the local Reynolds number. Here we
give an example with a correlation from Rowe (1961) for a dilute two-phase solid–gas
mixture:

Fd = 6πRµg(us − ug)NsCd (14)
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with the drag coefficient defined by Cd = 1 + 0.15Re0.687 if Re < 1000 and
Cd = 0.01833Re otherwise. The particles are assumed spherical, and their radius R is
obtained from the relation between volume fraction and number density of particles:
αs = 1− αg = Ns

4
3
πR3. The Reynolds number is expressed as Re = 2Rρg|us − ug|/µg .

The general drag force may be written in the form

Fdk = λk(uk − u′k) (15)

where λk is a positive finite function (or vector if there are more than two fluids).
It controls the rate at which velocities tend towards equilibrium. In special physical
situations, this function tends to infinity, for example in materials with a very high
deviatoric stress tensor (gas pores inside a solid). Such a situation has been studied
recently by Kapila et al. (1997) in the limit of very high drag coefficients.

On the other hand, for reasons related to the numerical method when solving
interface problems between pure fluids with the multiphase model, we have shown
that missing characteristic directions at the interface may be replaced by source terms
with infinite pressure and velocity relaxation coefficients (Saurel & Abgrall 1999a).
We have explained in the previous section that the first interface condition could
be restored with an infinite µ coefficient. To restore the second interface condition
(velocity equality), an infinite drag coefficient λ must be used. The numerical procedure
with infinite relaxation coefficients will be detailed in a subsequent section for an
arbitrary number of fluids.

2.2.2. Conventional interaction terms–finite relaxation terms

(a) Mass and energy transfers
The mass transfer term mk is usually given by empirical relations depending on
the process under study: evaporation, condensation, combustion etc. For example,
to model the combustion of solid propellant particles in a gas, the simplest model
available is based on Vieille’s law. It expresses the rate of particle size regression as a
function of pressure: dR/dt = aP n

g where a and n are empirical constants. Then, the
mass transfer is

ms = ρsSsNs

dR

dt
(16)

where the subscript s denotes solid particles. Ss represents the surface of an individual
particle (Ss = 4πR2).

For specific applications, more detailed models are preferred to Vieille’s law. When
a detailed description of propellant combustion is necessary, models based on the
flame structure may be used (Mitani & Williams 1986). A mechanistic model based
on pore collapse mechanics is developed in Massoni et al. (1999) for the dynamics
of shock-to-detonation transition in solid energetic materials. In other mass transfer
problems (evaporation, condensation, cavitation), without chemical transformation,
the mass transfer reduces to a phase change problem and is obtained from the
interface-averaged equations.

Substitution of the mass (6) and the momentum (7) interface equation in the
interface energy equation (8) yields in the simplified case of a two-phase system

m1 = −(Q1i + Q2i)/(E1i − E2i). (17)

This relation shows that the mass transfer is a function of the heat transfer. Heat
transfers are usually provided by empirical correlations based on the Nusselt number:

Qki = hk(Tki − Tk)Aex (18)
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where hk represents the heat exchange coefficient, Tki the interface temperature, Tk
temperature of phase k and Aex the exchange area between phase k and the interface.
For evaporating liquid droplets in a gas flow, Yuen & Chen (1977) have proposed an
empirical correlation for the Nusselt number:

Nu = 2 + 0.6Re0.5Pr0.33 (19)

where Re represents the Reynolds number defined previously and Pr the Prandtl
number. This correlation provides an easy expression for the heat exchange coefficient:

hg = λgNu/(2R) (20)

where λg is the gas conductivity.
In such two-phase flows where the topology and geometry of elemental particles is

estimated with a reasonable accuracy by spherical particles, the exchange interfacial
area is simply Aex = NlSl where Sl = 4πR2 represents the surface of an individual
droplet.

When mass transfer occurs, an extra source term is present in equation (1) and
involves a density ρX . This density must be chosen equal to that of the less compress-
ible material. The reason is that mass transfer phenomena induce acoustic waves.
Thus, the pressure relaxation process is coupled to the mass transfer. Since it is very
difficult to solve these two phenomena in a fully coupled way, we separate the acoustic
propagation and the mass transfer during numerical resolution. Thus, within a time
step, the best estimates for the volume changes due to mass transfer are the ones
based on the less compressible material. The partial volumes are then adjusted by the
pressure relaxation procedure.

(b) Breakup and coalescence
Breakup and coalescence phenomena are related to the interfacial area determination.
Coalescence modelling is a very difficult task and can be achieved in only limited
situations. Breakup phenomena are usually modelled on the basis of hydrodynamic
instabilities and are also limited to simplified situations: bubbly and droplet flows. An
empirical model based on Weber number for droplet breakup may be found in Kolev
(1993). When the flow consists in gas–droplets only, breakup modelling consists of
determining the source term of equation (5): Ṅk . Application of the Kolev breakup
mechanism in two-phase flow modelling is given in Utheza et al. (1996).

3. Numerical method
For all applications previously mentioned we have to solve an hyperbolic system, in-

volving non-conservative terms and equations, and finite and infinite relaxation terms.
Unconditional hyperbolicity has been demonstrated in Saurel & Abgrall (1999a). It
can also be easily shown that the summation of other all phases of the mass,
momentum and energy equations reduces to the mixture Euler equations. So the
mixture is perfectly conservative. Frame invariance of the equations can also be easily
demonstrated.

When a first-order numerical scheme is employed, we need three types of integrators
to reach the solution, provided that the Strang splitting is assumed valid. The solution
is obtained by a succession of operators (Strang 1968):

Un+1
i = L∆t

S L
∆t
R L

∆t
H U

n
i . (21)

LS represents the integration operator for source terms: mass and energy finite rate
transfers. When velocity and pressure relaxation are also finite rate, LS is used instead
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of LR , the infinite relaxation operator. We do not provide details of the LS operator.
It is a standard ODE solver, and its accuracy and robustness are dependent on the
problem stiffness (for example see Byrne & Dean 1992).

An expression for the infinite relaxation operator LR is not easy to obtain. We
have provided a detailed description of it in Saurel & Abgrall (1999a) in the context
of two fluids only. We generalize it in the following for an arbitrary number of
materials, governed by arbitrary equations of state. This is of major importance for
the applications with detonations and hydrocodes, where a large number of materials
coexist. But the major difficulties lie in the hyperbolic solver LH which we now
describe. Basic elements are again given in Saurel & Abgrall (1999a). We generalize
it here to the multidimensional case after recalling the basic ideas.

3.1. Hyperbolic operator

The numerical method we are developing applies at all mesh points: single phase,
two phase and at the interfaces. For the sake of simplicity and generality regarding
complex equations of state for the various fluids, we have retained the simplest
ingredients for the construction of a high-resolution scheme for two-phase flows with
arbitrary equations of state. The Riemann solver is chosen for an easy implementation
with the various models and equations of state, even though its accuracy could be
improved.

The hyperbolic system involves several difficulties. Non-conservative terms and a
non-conservative equation (the volume fraction evolution equation) are present. We
have proposed in Saurel & Abgrall (1999a) an efficient way to discretize these terms.
The main idea that guides the building of the numerical scheme can be stated as
follows:

If a multiphase flow evolves under uniform pressure and velocity conditions, it must
remain uniform under the same variables during time evolution.

This has been systematically exploited in the context of the Euler equations and
has shown that it provided an efficient discretization scheme for non-conservative
equations even when velocity and pressure were not initially uniform (Saurel &
Abgrall 1999b).

3.1.1. One-dimensional first-order method

For the sake of simplicity we first explain the method in one dimension with a first-
order Godunov type scheme. We then generalize it in multidimensions and second
order. The equations to solve for each phase k are

∂αk

∂t
+ ui

∂αk

∂x
= 0,

∂U

∂t
+
∂F(U )

∂x
= H(U )

∂αk

∂x
,

 (22)

with U = (αkρk, αkρkuk, αkρkEk, Nk)
T , F(U ) = (αkρkuk, αkρku

2
k + αkPk, uk(αkρkEk +

αkPk), Nkuk)
T , and H(U ) = (0, Pi, Piui, 0).

In quasi-linear form with primitive variables, this system is

∂W

∂t
+ A(W )

∂W

∂x
= 0 (23)
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with W = (αk, ρk, uk, Pk, Nk)
T and

A(W ) =


ui 0 0 0 0

ρk/αk(uk − ui) uk ρk 0 0

(Pk − Pi)/αkρk 0 uk 1/ρk 0

ρkc
2
ki/αk(uk − ui) 0 ρkc

2
k uk 0

0 0 Nk 0 uk

 .

The Jacobian matrix A(W ) admits the following eigenvalues: ui, uk + ck, uk − ck and
uk . So the system is hyperbolic. Note that the Euler system eigenvalues are recovered,
augmented by an extra one which is ui.

Knowledge of these wave speeds is necessary for the Riemann solver. For the
numerical approximation of the conservative fluxes F(U ) we use the HLL (Harten,
Lax & van Leer 1983) Riemann solver. At a cell boundary separating right (R) and
left (L) states, the corresponding flux is

F∗ = (SRFL − SLFR + SRSL(UR −UL))/(SR − SL) (24)

where the waves speed SR and SL are estimated by

SR = Maxk (0, (uk + ck)R, (uk + ck)L) and SL = Mink (0, (uk − ck)R, (uk − ck)L)

It is now necessary to determine the discretization formulas for the non-conservative
terms and equation. To obtain these formulas, we develop over a time step the
Godunov scheme with the HLL flux for each equation. We then pose that the
pressure and velocities are uniform. Under the restriction that the flow must retain
the same pressure and velocity, we will find the corresponding formulas for the
non-conservative terms and equation.

The Godunov scheme with HLL flux for the quasi-conservative system (second
equation of system (22)) is

Un+1
i = Un

i − λ(F∗i+1/2 − F∗i−1/2) +H(Un
i )∆ (25)

where λ = ∆t/∆x and ∆ represents the numerical approximation of ∂αk/∂x which we
now give.

We start from the mass conservation equation of phase k:

(αkρk)
n+1
i = (αkρk)

n
i − λ(Ωi+1/2 − Ωi−1/2)

with

Ωi+1/2 =
SRi+1/2(αkρkuk)

n
i − SLi+1/2(αkρkuk)

n
i+1 + SRi+1/2S

L
i+1/2((αkρk)

n
i+1 − (αkρk)

n
i )

SRi+1/2 − SLi+1/2

.

Assuming unki−1
= unki = unki+1

= u we obtain

Ωi+1/2 =
u(SRi+1/2(αkρk)

n
i − SLi+1/2(αkρk)

n
i+1) + SRi+1/2S

L
i+1/2((αkρk)

n
i+1 − (αkρk)

n
i )

SRi+1/2 − SLi+1/2

.

We now consider the momentum equation. Assuming pressure uniformity Pn
ki−1

=
Pn
ki

= Pn
ki+1

= P we obtain

(αkρkuk)
n+1
i = (αkρkuk)

n
i − λ(Ψi+1/2 −Ψi−1/2) + ∆tP∆
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where

Ψi+1/2 = u
u(SRi+1/2(αkρk)

n
i − SLi+1/2(αkρk)

n
i+1) + SRi+1/2S

L
i+1/2((αkρk)

n
i+1 − (αkρk)

n
i )

SRi+1/2 − SLi+1/2

+P
SRi+1/2(αk)

n
i − SLi+1/2(αk)

n
i+1)

SRi+1/2 − SLi+1/2

.

From the mass and momentum equations, it is clear that in order that the velocity at
time tn+1 be equal to that at time tn it is necessary that the non-conservative term be
discretized by

∆ =
1

∆x

(
SRi+1/2(αk)

n
i − SLi+1/2(αk)

n
i+1

SRi+1/2 − SLi+1/2

− SRi−1/2(αk)
n
i−1 − SLi−1/2(αk)

n
i

SRi−1/2 − SLi−1/2

)
. (26)

So, the numerical approximation of ∂αk/∂x is determined.
We now consider the energy equation under uniform pressure and velocity condi-

tions. After some simplifications we obtain

(αkρkek)
n+1
i = (αkρkek)

n
i − λ(Φi+1/2 − Φi+1/2)

where

Φi+1/2=
u(SRi+1/2(αkρkek)

n
i −SLi+1/2(αkρkek)

n
i+1)+S

R
i+1/2S

L
i+1/2((αkρkek)

n
i+1−(αkρkek)

n
i )

SRi+1/2 − SLi+1/2

.

We now introduce the equation of state. An equation of state valid for gases,
liquids and solids under hydrodynamic regime is the stiffened gas equation of state:
ρkek = (Pk + γkPinfk )/(γk − 1). Since γk and Pinfk are constant parameters of phase k
and pressure Pk is uniform, each product ρkek is constant. This yields

αn+1
ki

= αnki − λ
(
u

(
SRi+1/2α

n
ki
− SLi+1/2α

n
ki+1

SRi+1/2 − SLi+1/2

− SRi−1/2α
n
ki−1
− SLi−1/2α

n
ki

SRi−1/2 − SLi−1/2

)

+
SRi+1/2S

L
i+1/2(α

n
ki+1
− αnki)

SRi+1/2 − SLi+1/2

− SRi−1/2S
L
i−1/2(α

n
ki
− αnki−1

)

SRi−1/2 − SLi−1/2

)
. (27)

This equation is simply a numerical approximation of ∂αk/∂t + u∂αk/∂x = 0. The
factor of u is again the discretization of ∂αk/∂x, and the other term is a viscous one.

It is important to note that the discretization of the non-conservative terms is
strongly dependent on the Riemann solver, and discretization of the non-conservative
equation makes a viscous term appear that is also dependent on the solver.

The last equation, expressing the conservation of the number density of elementary
particles, is uncoupled from the overall system and is solved without difficulty with
scheme (25). To summarise, system (22) is solved by the following method:

the first equation of system (22) is solved by (27);

the other part of system (22) is solved by (25), with numerical flux (24) and
numerical approximation of non-conservative term (26).

This scheme is stable under the standard CFL condition, based on the largest
absolute wave speed.

This method can be extended to second order and multidimensions and details are
provided next.



A multiphase model for compressible flows 255

3.1.2. Two-dimensional second-order method

The system to solve now is:

∂αk

∂t
+ ui

∂αk

∂x
+ vi

∂αk

∂y
= 0,

∂U

∂t
+
∂F(U )

∂x
+
∂G(U )

∂y
= H(U )

∂αk

∂x
+ I(U )

∂αk

∂y
,

 (28)

with

U = (αkρk, αkρkuk, αkρkvk, αkρkEk, Nk)
T ,

F (U ) = (αkρkuk, αkρku
2
k + αkPk, αkρkukvk, uk(αkρkEk + αkPk), Nkuk)

T ,

G(U ) = (αkρkvk, αkρkukvk + αkρkv
2
k + αkPk, vk(αkρkEk + αkPk), Nkvk)

T ,

H(U ) = (0, Pi, 0, Piui, 0) and I (U ) = (0, 0, Pi, Pivi, 0).

The basic ingredients of the finite volume method used here are described in Toro
(1997) in the context of the Euler equations. We consider a computational cell i in the
two-dimensional (x, y) space. Note that nij is the external unit normal vector of the j
side of cell i: nij = (nijx, nijy)

T . Also, K = (F ,G) is the tensor of fluxes and S = (H , I )
the non-conservative vectors.

As done previously with the Godunov scheme, we first have to consider the second
equation of system (28): ∂U/∂t + ∇ · K = S · ∇αk . Integrating this equation over a
fixed control volume V delimited by its sides, yields

V
∂U

∂t
+
∑
sides

∫
T−1F (TU ) dL =

∫
(S · ∇αk) dV

where T is the rotation matrix and T−1 is its inverse.
A first-order time and space approximation yields the following result:

Un+1
i = Un

i − ∆t/Vi

4∑
j=1

T−1
ij Lij F̂

∗
ij + ∆t(H(Un

i )∆x + I (U n
i )∆y)

where ∆x and ∆y are numerical approximations of ∂αk/∂x and ∂αk/∂y, Lij is the

length of the j side of cell i and F̂∗ij is the HLL numerical flux on the corresponding
cell boundary in the rotated frame of reference (along the normal nij):

F̂∗ij = (SRjF̂Lj − SLjF̂Rj) + SRjSLj(ÛRj − ÛLj)/(SRj − SLj)
where Ûij = TijUij and F̂ij = F(Ûij). Since T−1

ij F̂ij = nijKij the Godunov method is

Un+1
i = Un

i − λ
4∑
j=1

LijΦ+ ∆t(H(Un
i )∆x + I(Un

i )∆y) (29)

with Φ = (SRjnijKLj − SLjnijKRj) + SRjSLj(URj −ULj)/(SRj − SLj) and λ = ∆t/Vi.
To determine discretization formulas for the non-conservative terms and equa-

tions, we consider a multiphase mixture flowing under uniform pressure and velocity
conditions and develop the various steps of the Godunov method (Godunov et al.
1979). Then, we assume here that there is no sliding between phases since they
are in velocity equilibrium. But there are some situations where it is necessary to
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consider sliding effects along a contact discontinuity or an interface. Such situations
are explained in Saurel & Abgrall (1999b). In that case, the discretization method
accounting for sliding effects as detailed in that reference is preferred. Here, we assume
that these effects are not of major importance for the practical applications under
consideration.

So, under the assumptions Pk = Pi = P and V k = V i = V and after the same steps
as previously we find

∆x = (1/Vi)

4∑
j=1

Lijnijx(SRjαkLj − SLjαkRj )/(SRj − SLj) (30)

and

∆y = (1/Vi)

4∑
j=1

Lijnijy(SRjαkLj − SLjαkRj )/(SRj − SLj) (31)

for the numerical approximations of ∂αk/∂x and ∂αk/∂y respectively.

By doing the same manipulations as previously with the energy equation we find
the discretization formula for the volume fraction evolution equation:

(αk)
n+1
i = (αk)

n
i − λ

4∑
j=1

LijΩ (32)

with Ω = (nij · (V )(SRjαkLj − SLjαkRj ) + SRjSLj(αkRj − αkLj ))/(SRj − SLj).
The Godunov method (29), with non-conservative approximations (30) and (31)

and non-conservative scheme (32) constitutes the first-order two-dimensional method
to use for the numerical resolution of system (28). We now examine its second-order
extension. This extension follows MUSCL strategy (van Leer 1979). The predictor
step is done under a primitive variables formulation. This choice of variables ensures
that pressure and velocity will remain uniform after the predictor step, when starting
from uniform conditions.

Predicted variables are computed at the middle of each cell boundary with

W
n+1/2
ij = Wn

i + (xcij − xi)δxWi + (ycij − yi)δyWi

−∆t/2(A(Wn
i )δxWi + B(Wn

i )δyWi) (33)

where (xcij , ycij) and (xi, yi) are the cell boundary and control volume centre coordinates
respectively, W is the primitive variables vector, A(W ) and B(W ) the Jacobian
matrices, and δxWi, δyWi the limited slopes along each direction. The primitive
variables vector is W = (αk, ρk, uk, vk, Pk, Nk)

T and the Jacobian matrices are:

A(W ) =



ui 0 0 0 0 0

ρk/αk(uk − ui) uk ρk 0 0 0

(Pk − Pi)/αkρk 0 uk 0 1/ρk 0

0 0 0 uk 0 0

ρkc
2
ki/αk(uk − ui) 0 ρkc

2
k 0 uk 0

0 0 Nk 0 0 uk
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B(W ) =



vi 0 0 0 0 0

ρk/αk(vk − vi) vk 0 ρk 0 0

0 0 vk 0 0 0

(Pk − Pi)/αkρk 0 0 vk 1/ρk 0

ρkc
2
ki/αk(vk − vi) 0 0 ρkc

2
k vk 0

0 0 0 Nk 0 vk


.

Then, by developing again the Godunov scheme over a time step, the resulting final
scheme is (corrector step):

(αk)
n+1
i = (αk)

n
i − λ

4∑
j=1

LijΩ

and

Un+1
i = Un

i − ∆t/Vi

4∑
j=1

T−1
ij Lij F̂

∗n+1/2
ij + ∆t(H(U

n+1/2
i )∆x + I(U

n+1/2
i )∆y)


(34)

with

Ω =
nij · (V i)

n+1/2(S
n+1/2
Rj α

n+1/2
kLj

− Sn+1/2
Lj α

n+1/2
kRj

) + S
n+1/2
Rj S

n+1/2
Lj (α

n+1/2
kRj

− αn+1/2
kLj

)

S
n+1/2
Rj − Sn+1/2

Lj

∆x = 1/Vi

4∑
j=1

Lijnijx(S
n+1/2
Rj α

n+1/2
kLj

− Sn+1/2
Lj α

n+1/2
kRj

)/(S
n+1/2
Rj − Sn+1/2

Lj )

∆y = 1/Vi

4∑
j=1

Lijnijy(S
n+1/2
Rj α

n+1/2
kLj

− Sn+1/2
Lj α

n+1/2
kRj

)/(S
n+1/2
Rj − Sn+1/2

Lj )

We now have to examine the various source and relaxation operators in the specific
context of infinitely fast relaxation processes.

3.2. Source and relaxation operators

The relaxation terms are particularly important since they allow the resolution of the
interface conditions. This particular procedure involves infinite relaxation coefficients
in order that interface conditions be satisfied at any time. The same procedure is also
used for detonation modelling in solid explosives. The characteristic time for a solid
grain to be in pressure equilibrium with the gas is of the order of the particle diameter
divided by the solid sound speed. This time is always smaller or of the same order
as the hydrodynamic time step. So, instantaneous pressure equilibrium is a correct
assumption.

Regarding velocity relaxation in the explosive, the same type of remark holds.
Initially, the gas is filling pores and after shock wave propagation must move with the
velocity of the surrounding material. In this situation the velocity relaxation process
can be considered instantaneous. During reaction, the gas volume fraction increases,
starting from a state where the velocities are equal. Then the pores dislocate and the
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grains and gas are free. But effects related to viscosity and density cannot allow too
large velocity differences. Indeed the gas density is very high (of the order 1 g cm−3).
To conclude, even if velocity differences are possible, their experimental measurement
is not possible under detonation conditions. So, the best estimate is to consider an
infinite drag coefficient.

Considering now cavitating flow, we consider it as an interface problem with
dynamic interface creation and mass transfer. So again, pressure equilibrium and
macroscopic velocity equilibrium are needed. The solution of the overall problem has
a physical sense only after the relaxation procedure step. So this step is of paramount
importance.

As in equation (21), we have to solve source terms (finite rate relaxation) as must
done for example with mass transfer, and relaxation terms (infinite rate relaxation)
for pressure and velocity. We begin with this last one.

3.2.1. Velocity relaxation operator

For each phase k we have to solve the ODE system

∂αk

∂t
= 0,

∂αkρk

∂t
= 0,

∂αkρkuk

∂t
= λ(uk′ − uk),

∂αkρkEk

∂t
= λui(uk′ − uk),


(35)

where the relaxation coefficient λ tends to infinity. This means that for any arbitrary
small time increment, the velocities must be in equilibrium.

Combination of the mass and momentum equations yields

∂uk

∂t
= λ(uk′ − uk)/(αkρk)

for phase k and

∂uk′

∂t
= −λ(uk′ − uk)/(αk′ρk′)

for phase k′. Substracting the first equation from the second and integrating yields
the expected result: u∗k − u∗k′ = 0. Then, summing the same equations and integrating
yields the relaxed velocity

u∗k =
∑

(αkρkuk)0

/∑
(αkρk)0 (36)

where the subscript 0 indicates the solution obtained from the hyperbolic solver.
Some remarks are in order. This relaxed velocity corresponds to the estimate we
have proposed for the averaged interfacial velocity (13). So, in all situations where
velocities are relaxed instantaneously, the estimated (13) is an accurate prediction
of the relaxed state. Note also that the relaxation procedure is an exact one, and a
straightforward extension of the two-fluid case as derived in Saurel & Abgrall (1999).

It now remains to update the internal energies, since system (35) involves relaxation
terms in the energy equation. Again, combination of the mass, momentum and energy
equations and exact integration yields

e∗k = ek0 + 1
2
(u∗k − uk0)2. (37)

We now examine the pressure relaxation step for an arbitrary number of fluids.
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3.2.2. Pressure relaxation operator

We have proposed in Saurel & Abgrall (1999a) a procedure valid only for two
fluids. Here, we improve the accuracy of the relaxation pressure step and generalize
it to an arbitrary number of fluids. This is important for example for detonation
interaction with neighbouring materials. The explosive is considered at least as a
mixture of solid and gas, and the neighbouring material is another fluid with an
interface that is solved with its own PDE system.

For any phase k we have to solve the ODE system

∂αk

∂t
= µ(Pk − Pk′),

∂αkρk

∂t
= 0,

∂αkρkuk

∂t
= 0,

∂αkρkEk

∂t
= −µPi(Pk − Pk′),


(38)

where the relaxation coefficient µ tends to infinity.

Combination of the volume fraction, mass, momentum and energy equations
yields

αkρk
∂ek

∂t
= −Pi ∂αk

∂t

where Pi is given by equation (12). Note that the first law of thermodynamics
is recovered here. Since mk = αkρk = const. then dαk = −mkdρk/ρk2. The energy
equation becomes:

∂ek

∂t
= Pi

∂(1/ρk)

∂t
.

Now, under the trapezoidal approximation: e∗k− e0
k = (P ∗i +P 0

i )/2(1/ρ∗k−1/ρ0
k), where

variables marked with an asterisk are relaxed ones, and variables marked with 0 are
obtained from the velocity relaxation step.

This corresponds to N equations (N is the number of fluids) with 2N+1 unknowns:
N energies, N densities and P ∗i . When the relaxation parameter tends to infinity, all
pressures must be equal: P ∗k = P ∗k′ = P ∗i . So there is only one pressure to determine.
To close the system we also have N equations of state: e∗k = ek(P

∗
i , ρ

∗
k). The saturation

constraint
∑
αk = 1 provides the last equation. The system to solve now is (we

suppress the symbol ∗)

2ρ1ρ
0
1(e1 − e0

1) + (Pi + P 0
i )(ρ1 − ρ0

1) = 0,

2ρ2ρ
0
2(e2 − e0

2) + (Pi + P 0
i )(ρ2 − ρ0

2) = 0,

· · ·
2ρNρ

0
N(eN − e0

N) + (Pi + P 0
i )(ρN − ρ0

N) = 0,∑
mk/ρk − 1 = 0.


(39)

The solution of this nonlinear system is obtained with the Newton–Raphson method.
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We set X = (ρ1, . . . , ρN, Pi)
T and

F (X ) =


2ρ1ρ

0
1(e1 − e0

1) + (Pi + P 0
i )(ρ1 − ρ0

1)

· · ·
2ρNρ

0
N(eN − e0

N) + (Pi + P 0
i )(ρN − ρ0

N)∑
mk/ρk − 1

 .

Newton’s method gives D(X l−1)∆X l = −F(X l−1) where l designates the current
iteration and ∆X l = (X l − X l−1). A solution is obtained when ∆Xl < ε. D(X )
represents the Jacobian matrix of the nonlinear system (D(X ) = ∂F (X )/∂X ) and is
given by

D(X ) =


A1 0 · · · 0 B1

. . .
...

AN BN
m1/ρ1 · · · mN/ρN 0


with

Ak = 2ρ0
k(ek − e0

k) + 2ρkρ
0
k(ekρ)P + (Pi + P 0

i )ρk

and

Bk = 2ρkρ
0
k(ekP )ρ + (ρk − ρ0

k).

This procedure is robust and accurate. It is used in all test problems of the next
section.

4. Test problems
We consider here test problems involving interfaces, cavitation, shock and deto-

nations in one and two space dimensions. All test problems involve instantaneous
pressure and velocity relaxation. Other test problems with finite rate relaxation (two
velocities) and other applications are available in Saurel & Abgrall (1999a).

4.1. Interface test problems

4.1.1. Water–air shock tube

We consider a shock tube filled on the left side with high-pressure liquid water
and on the right side with air. This test problem consists of a conventional shock
tube with two fluids and possesses an exact solution. For this test problem, standard
methods based on the Euler equations fail at the second time step.

Each fluid is governed by the stiffened gas equation of state (Godunov et al. 1979):

P = (γ − 1)ρe− γPinf (40)

where γ and Pinf are constant parameters. The initial data are: ρl = 1000 kg m−3,
Pl = 109 Pa, ul = 0 m s−1, γl = 4.4, Pinfl = 6× 108 Pa, αl = 1− ε(ε = 10−6) if x < 0.7;
ρg = 50 kg m−3, Pg = 105 Pa, ug = 0 m s−1, γg = 1.4, Pinfg = 0, αg = 1 − ε otherwise.
To show mesh convergence of the results, a mesh involving 1000 cells is used. The
corresponding results are shown on figure 1 at time 229 ms. For this test case, the right
and left chambers contain nearly pure fluids: the volume fraction of gas in the water
chamber is only 10−6 and vice versa in the gas chamber. The phase densities and
internal energies are not compared with the exact solution because no exact solution
exists for these variables (no exact Riemann solver is available for this model). But
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Figure 1. Water–air shock tube. Computed solution with 1000 cells (symbols)
and exact solution (lines).

the mixture density, the phase pressures and velocities can be compared with the
exact solution. The graphs for the pressures and velocities show three curves: two
numerical curves and the exact solution. The two curves representing gas and liquid
pressure and velocities are indiscernible. This is a result of the pressure and velocities
relaxation procedures that give an accurate relaxed state. The mixture density is
obtained by a combination of the phase densities that are weighted by the volume
fraction and summed.

The graph representing the mixture density shows an excessive numerical diffusion
of the interface. This is a result of the stiffness of this problem. The two materials,
air and water, have a very different behaviour and EOS parameters, and the pressure
ratio is too high (see the pressure graph). This situation for the liquid phase is close to
one where the liquid should be connected to a vacuum. Also, the excessive numerical
diffusion is a result of our approximate Riemann solver. This is clearly visible on
figure 2 where a mesh with only 100 cells is used.

The Riemann solver uses only the two fastest waves instead of the total number of
waves (seven here). This will be remedied in the future Abgrall & Saurel (2000).

4.1.2. Two-dimensional water–air shock tube

We now consider the same type of problem in two dimensions. The liquid and gas
are initially at the same conditions as in the previous test problem. A high-pressure
liquid square is located at the centre of the domain as shown on figure 3. The
liquid contains 1% gas and vice versa. Results are shown at time 0.1 m s on the
same figure. The volume fraction contours show two gradient zones. The external
one represents the gas–liquid interface. The inner one represents cavitation effects
inside the liquid. Because of the pressure differential, the interface first expands as in
the one-dimensional shock tube. Then the two-dimensional rarefaction waves interact
and reflect at the centre of the domain resulting in an over-expansion of the liquid.
Inertial effects and rarefaction wave focusing produce liquid densities outside the
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Figure 2. Water–air shock tube. Computed solution with 100 cells (symbols)
and exact solution (lines).
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Figure 3. Two-dimensional water–air shock tube. Volume fraction gradients indicate the interface
and cavitation zones. The pressure remains always positive.

domain of validity of the equation of state of pure liquid. In other words, if this type
of computation is done with single-phase equations (i.e. Euler), the pressure becomes
negative, even if a very accurate method is used for the computation of the interface.
Here, with the multiphase model, rarefaction effects induce gas or bubble expansion
instead of liquid and the pressure remains positive. This is closer to reality when mass
transfer appears in liquid to form vapour. In this computation, mass transfer is not
active, and gas expansion is only due to pressure relaxation.

Cavitation and dynamic interface creation are more visible on the next examples.
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4.2. Cavitation test problems

4.2.1. One-dimensional cavitation tube

Consider a tube filled with water and imagine that the right part is set in motion to
the right, and the left part is set in motion in the opposite direction. In such a situation,
the pressure, the density and the internal energy decrease across the rarefaction waves
in order that the velocity reaches zero at the centre of the domain. The pressure
decreases until it reaches the saturation pressure at the local temperature. When the
saturation pressure is reached mass transfer appears and part of the liquid becomes
gas: the flow becomes a two-phase mixture.

When this type of problem is solved with the Euler equations, so with a single-fluid
model and an appropriate equation of state for the liquid (the stiffened gas EOS for
example), the pressure becomes completely wrong (i.e. negative). The reason is that
the stiffened gas EOS, like any equation of state for liquids and solids, is no longer
valid when mass transfer occurs. Indeed the liquid transforms to gas, and the gas is
governed by a very different EOS.

There are two alternative ways to solve this problem. The first one is to construct
an EOS valid for the liquid phase, the two-phase mixture, and the gas phase. Such a
type of approach is taken when the Euler equations are solved with the van der Waals
(or other) equation of state. But it has been shown (Godunov et al. 1979; Menikoff &
Plohr 1989) that convexity of the EOS was necessary for well-posedness. Clearly, the
requirement is not satisfied with the van der Waals and other cubic EOS. Another
type of EOS that avoids this problem is derived in Saurel et al. (1999). But this model
EOS assumes that mass transfer occurs at an infinite rate. This is not always correct.

The second alternative is to use the non-equilibrium multiphase flow model. With
this model, each phase possesses its own EOS and proper behaviour. The liquid phase
will be governed by the stiffened gas EOS, and the gas phase by the ideal gas one.

To model cavitation, mass transfer effects need to be considered. But to introduce
it, relations (17)–(20) can be used with a given correlation for the energy transfer (19).
Clearly, there are strong uncertainties about these correlations in cavitating flows. So,
we prefer to not consider mass transfer but to examine the model behaviour in a
simplified situation where a small fraction of gas is initially present in the liquid (1%
gas by volume). From this initial situation where the gas and liquid are at atmospheric
pressure, we set into motion the right part of the tube at 100 m s−1, and the left part
at −100 m s−1. The results are shown on figure 4.

The density graphs show the liquid and gas evolutions. The liquid density decreases
slightly but remains close to the initial one. The liquid remains liquid at a positive
pressure. The gas density decreases across the rarefaction waves and decreases again
due to the pressure relaxation process. The gas density at the centre of the tube is
very low. The pressure relaxation process makes the gas volume fraction increase. So,
the mixture density decreases too, as expected, and the velocity profiles tend to the
expected solution. It is important to note that the increase in gas volume fraction
creates two interfaces propagating to the right and to the left. So this method has the
capability of creating dynamically interfaces starting from a nearly pure liquid. This
feature has important applications for specific problems, as shown on the following
two-dimensional example.

4.2.2. Two-dimensional cavitation around an obstacle in a supersonic liquid flow

The following two-dimensional, unsteady calculation is done with the same mixture
as previously: 99% water and 1% gas at atmospheric pressure and temperature,
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Figure 4. One-dimensional cavitation tube. Interfaces appear dynamically, pressure remains positive
and liquid density remains inside the domain of validity of the EOS. The numerical solution is
shown at time 1826 µs with thin lines. The initial condition is represented with thick lines.

flowing over an obstacle with a given inflow velocity. The obstacle surface is treated
as a rigid wall with centreline symmetry. The outflow and upstream boundaries are
treated as non-reflecting. At the inflow boundary on the left-hand side the fluid is
99% liquid and 1% gas moving at 2000 m s−1 (supersonic relative to the liquid sound
speed). The obstacle has conical-shaped leading and trailing edges and a cylindrical
centrebody. Since the inflow is supersonic, a detached shock wave is expected in
front of the obstacle as represented on the pressure contours in figure 5. On the
two angular points connecting the cones to the cylindrical portion, strong rarefaction
waves are expected, possibly capable of inducing cavitation. Volume fraction contours
are presented in figure 5(a–c) at 1, 10 and 20 µs to illustrate the unsteady formation
of cavitation pockets and bubble tearing. Figure 5(d) shows the pressure contours.
The detached shock wave in front of the obstacle is clearly visible.
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4.3. Shock and detonation test problems

4.3.1. Shock propagation in solid alloys

We now evaluate the model and method capabilities for the computation of shock
waves in a two-phase mixture for a test problem involving very strong shock waves.
The two-phase system does not admit conventional Rankine–Hugoniot relations
because non-conservative and relaxation terms are present in the equations. But
it is possible to solve these equations in the unsteady regime with the proposed
numerical method, and to examine the two-phase shock wave behaviour. To do this,
we simulate the impact of a piston on two-phase mixtures. The piston impact is treated
as a boundary condition. In order to evaluate computed results, we need reference
solutions. Specific situations with experimental results are available in the literature.
Indeed, for many solid alloys the Hugoniot curve is available. These experimental
data relate the shock velocity Us to the material velocity u: Us = c0 +su where c0 is the
material sound speed under atmospheric conditions and s a dimensionless constant.

Under very strong impact conditions, as is usual with shocks in solids and deto-
nation applications, the solids are of course compressible and behave like fluids. In
these conditions a solid alloy is simply a multiphase or multifluid solid mixture. So,
to obtain the numerical Hugoniot curve of the alloy we compute with the multiphase
model several unsteady impact problems, by varying the velocity boundary condition,
and we note the shock velocity versus the impact (material) velocity. We obtain the
results shown in figure 6. Part(a) is related to brass (Cu/Zn alloy), with an initial zinc
volume fraction of 0.29. Figure 6(b) is related to a uranium/rhodium alloy with an
initial rhodium volume fraction of 0.265. Figure 6(a) corresponds to an epoxy/spinel
mixture, with an initial epoxy volume fraction of 0.595.

On each graph, the experimental data are represented with symbols. The curves
represent two different theoretical approaches. The first one, which fits correctly the
experimental data, is obtained with the multiphase model. This model needs only the
pure material equations of state for each substance, which are well known. The second



266 R. Saurel and O. LeMetayer

5500

5000

4500

4000
600 800 1000

6000

5000

4000

3000

0 400 800 1200 1600 2000 2400

4000300020001000

4000

6000

8000

10000

12000

14000

Mixture EOS
Experimental points
Two-phase model

(a) (b)

(c)

Material velocity, U(m s–1)

S
ho

ck
 v

el
oc

it
y,

 U
s (

m
 s

–1
)

S
ho

ck
 v

el
oc

it
y,

 U
s (

m
 s

–1
)

Material velocity, U(m s–1)

Material velocity, U(m s–1)

Figure 6. Experimental and theoretical Hugoniot curve for several alloys: (a) Cu/Zn, (b)
U/rhodium, (c) epoxy/spinel. The numerical Hugoniot from multiphase computation fits correctly
experimental data.

one is the conventional approach, based on the Euler equations with an equation of
state for the mixture. This type of procedure is described for example in Massoni et
al. (1999) and Shyue (1998). The errors induced by the mixture equations of state are
clearly visible here. This analysis demonstrates the advantage of the multiphase flow
approach for such problems.

4.3.2. Detonation waves and mixture equation of state

We evaluate here the capabilities of the method to compute detonation waves
in solid energetic materials. Unlike the previous test problem, it now involves mass
and energy transfers. Some care must be taken with the numerical method in such
a situation. When the mass transfer effects are considered in the presence of a
shock wave, the non-conservative terms P (∂α/∂x) and Pu(∂α/∂x) may pose some
difficulty. Indeed, the numerical approximation for ∂α/∂x has been derived for a
specific situation where P and u were uniform and α discontinuous. When dealing
with shock waves, P and u are discontinuous but α is constant (or nearly). Thus, the
numerical approximation of P (∂α/∂x) does not pose any problem. But when dealing
with detonation waves, α is no longer constant because of mass transfer. The solution
we have adopted to avoid this problem is to forbid mass transfer inside the shock. To
detect the shock front we use the following shock indicator: when Pn+1

i /P n
i > 1+TOL

where TOL represents a given tolerance (0.2 for practical computations), then the
mesh point i lies inside the shock front. This numerical treatment is in agreement
with the detonation structure.

Another numerical approach to deal with the problem of shocks, as well as with
the problem of smeared interfaces, is developed in a work in progress (Abgrall &
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Saurel 2000). The multiphase model is particularly interesting for detonation wave
modelling for the following reason. With solid explosives, inside the reaction zone it
is reasonable to think that the solid retains a grain shape structure at the microscopic
scale. The typical size of solid elemental particles will be much bigger than the size
of a molecule. So, even if molecular collisions and turbulence effects are present, they
will not induce temperature equilibrium in the mixture. With the multiphase model
each phase possesses its own temperature and density.

For the following test problem, we show that our model and method furnishes the
correct solution for detonation waves, and also that temperature and densities are
always out of equilibrium inside the reaction zone.

In order to compare the solution of the multiphase model to an exact solution
we choose an unusual test problem. We consider that the solid and the gas phase
are governed by the same equation of state, and to simplify the analysis we chose
the ideal gas equation of state P = (γ − 1)ρe with γ = 3 for both phases. Then, the
multiphase model solution must degenerate to the single-phase Euler solution for all
mixture variables.

Inside the detonation wave reaction zone the reactive Euler equation can be solved
exactly between the shock point (Neumann spike) and the point moving at the
sonic velocity relative to the shock front (CJ point). This conventional calculation
corresponds to the ZND model solution and can be performed exactly in a simplified
situation such as given in Fickett & Davis (1979), or by the resolution of an ODE
problem with a nearly exact accuracy. Here, we use the conditions of the ZND
problem given in Fickett & Davis.

We use exactly the same explosive data and we solve the entire flow in the
unsteady regime. After the shock-to-detonation transition a stable detonation wave
is obtained. When this detonation is stable (the bottom curves of figures 7) we
compare the reaction zone obtained from the computation and the exact solution.
Comparison is made only in the reaction zone because the ZND model is valid
only in this part. Also, comparison is possible only for mixture flow variables: the
ZND problem has never been solved for multiphase mixtures. Results are shown
in figure 7. The exact solution is shown with symbols and the numerical one is
plotted with lines. Results are shown at time 12.11 µs. The thick lines are related
to the solid phase variables and the thin ones to the gas phase. It appears that
the numerical solution converges to the exact one. The other important result is
that the densities and temperatures of the two fluids are never in equilibrium inside
the reaction zone, even for this basic test problem where the equation of state and
material properties are exactly the same. This result is actually obvious: the gas phase
receives energy from the solid phase, while the solid phase does not receive any
energy.

Some spurious oscillations are visible on the curves near x = 0. The oscillation
in the mixture density and phase temperature is due to the overheating phenomena
(Fedkiw et al. 1999). The unrealistic level reached by the solid-phase density near the
location x = 0 is a combination of overheating and mass transfer. Indeed, at this
location, the solid phase is no longer present: the solid volume fraction is nearly zero
and the solid density calculation has no physical meaning.

5. Conclusion
A compressible multiphase unconditionally hyperbolic model has been proposed.

It is able to deal with a wide range of applications: interfaces between compressible
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Figure 7. Detonation test problems. Mixture variables are compared to ZND calculation inside
the reaction zone. Results show that fluid temperatures and densities are never in equilibrium.

materials, shock waves in condensed multiphase mixtures, homogeneous two-phase
flows (bubbly and droplet flows) and cavitation in liquids. It is able to create dynam-
ically interfaces in cavitating flows, and to deal with mutiphase mixtures as well as
interface problems.

This model does not need a mixture equation of state and provides thermodynamic
variables for each phase. This is important for detonation modelling. Also, it is
conservative regarding the mixture, even at the interfaces. This provides accurate
energy and temperature computation.
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